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Abstract—This paper aims at exploring numerical stability
properties of various software sensors used in chemical science
and engineering. These are applied commonly to evaluation of
variables and/or parameters of chemical systems, which cannot
be measured by technical means. Practical software sensors are
often grounded in the extended Kalman filtering (EKF) method
applied to estimation of this and that stochastic model. Usually,
a conventional chemical system consists of an Itô-type stochastic
differential equation representing the chemical reaction’s dynam-
ics and a discrete-time equation linking the model’s state to the
measurement information. The focus of this research is on the
numerical stability of various EKF-based software sensors in
the presence of round-off errors. Our case study exploration is
fulfilled on the famous Van der Vusse reaction model but used
with an ill-conditioned measurement function, here. We reveal
that only square-root versions of the EKF-based software sensors
(grounded in numerically stable orthogonal transformations) are
the methods of choice for state and/or parameter estimations
of stochastic chemical systems in the presence of round-off and
other disturbances.

Index Terms—continuous-discrete stochastic system, Van der
Vusse reaction model, ill-conditioned measurement function,
extended Kalman filter

I. INTRODUCTION

It is commonly accepted in applied science and engineering
studies that a chemical state estimation task is set for a
continuous-discrete stochastic system of the form [1]:

dx(t) = F
(
x(t), u(t)

)
dt+Gdw(t), t > 0, (1)

yk = h(xk) + vk, k ≥ 1. (2)

In the above stochastic system, the process equation (1) is
justified by the continuous-time fashion of chemical reaction
modeling and is usually given as a standard Itô-type Stochastic
Differential Equation (SDE). Here, the n1-dimensional vector
x(t) ∈ Rn1 represents the chemical reaction’s state at time t,
the n2-dimensional vector u(t) ∈ Rn2 refers to its measurable
input at time t and may include control inputs as well,
F : Rn1 × Rn2 → Rn1 is a drift function, which describes
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the chemical reaction’s kinetics itself, and the time-invariant
diffusion matrix G of size n1 × q and the zero-mean white
Gaussian process {w(t), t > 0} with a square covariance
matrix Q > 0 of size q simulate random disturbances existing
in real-world chemical processes. We recall that the notation
Q > 0 implies the positive definiteness of the matrix Q. The
initial state x0 of SDE (1) also represents a random variable
distributed as follows: x0 ∼ N (x̄0,Π0) with Π0 > 0. Here and
below, the notation N (x̄0,Π0) refers to the normal distribution
with mean x̄0 and covariance Π0.

In the discrete-time measurement equation (2), the subscript
k means a discrete time index (i.e. xk stands for x(tk)), the
m-dimensional vector yk ∈ Rm implies the measurement
information available at the sampling time tk, the function
h : Rn1 → Rm links the model’s state xk to the measurement
information yk and it is supposed to be differentiable. Lastly,
random disturbances of the measurement process are simulated
by a Gaussian white-noise sequence {vk, k ≥ 1} distributed
with zero mean and some covariance matrices Rk > 0 in
the stochastic model (2) at sampling instants tk. We assume
that the measurement samples arrive uniformly and with the
sampling rate δ = tk − tk−1. Most importantly, all random
processes in the stochastic system (1), (2) and its initial state
are supposed to be mutually independent.

The main question of the state estimation task stated
in chemistry research sounds as follows: With use of the
mathematical model (1), (2) and measurement information yk
available at a sampling time tk, one has to evaluate true values
of the chemical reaction quantities xk, which may not be
measured by technical devices (or whose measurement is too
expensive in practice). A conventional solution to this task is
given in the form of state estimator, which represents a math-
ematical method (filtering algorithm). It serves for estimation
of the continuous-discrete stochastic system at hand. That is
why the mentioned filter (presented in the form of a software
code) is also interpreted as a Software Sensor (SS) [2].

Performance of every SS utilized in chemical engineering
studies is fully determined by the objective criterion underly-
ing a particular filter. Below, we consider the Extended Kalman
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TABLE I
INITIAL VALUES IN OUR ILL-CONDITIONED VAN DER VUSSE REACTION

SCENARIO

state variable value

cA 2.1404 mol/L
cB 1.0903 mol/L
T 387.34 K
TJ 386.06 K

Filtering (EKF) approach, which is the minimum-variance
technique used commonly for practical state estimation needs
in stochastic systems with Gaussian noise. The latter state
estimation tasks often arise in various areas of applied science
and engineering.

Our study aims at exploration of the numerical robustness
and accuracy of EKF-based SS’s when these are applied to
continuous-time stochastic models of the form (1) but with ill-
conditioned discrete-time measurements (2). The high sensitiv-
ity of the classical Kalman Filtering (KF) method to round-off
operations existing in any finite-precision computer arithmetic
has been known for long time and investigated extensively in
literature (see, for example, [3], [4] and references therein).
The cited literature establishes that one potential solution to
this ill-conditioning problem lies in the realm of square-root
Kalman filtering.

Despite a good deal of sound papers related to numerical
robustness investigations of various versions of the KF method,
just a little interest has been paid to the continuous-time filter-
ing so far, especially in the context of estimating continuous-
discrete stochastic systems of the form (1), (2) in chemical
engineering. So, the present exploration bridges this gap by
means of the case study investigation of numerical robustness
properties of several EKF-based SS’s within a stochastic
scenario based on the well-known Van der Vusse reaction.
We point out that the chosen scenario is a classical benchmark
problem in a number of valuable studies in chemistry research,
as evidenced, for instance, in [5], [6]. In the next section,
we explain how to convert the cited Van der Vusse reaction
model into its ill-conditioned variant utilized in our numerical
experiments.

II. VAN DER VUSSE REACTION SCENARIO WITH
ILL-CONDITIONED MEASUREMENTS

In Sec. II, we follow [6], [7] while presenting the stochastic
scenario exploited below. The Van der Vusse reaction under
consideration consists of four species marked by the letters
A, B, C and D in the cited papers. There, the desired
outcome product is B, while C and D are unwanted by-
products. This reaction is fulfilled in a Continuously Stirred
Tank Reactor (CSTR) with a cooling jacket and simulated
by the SDE model of the form (1) where the 4-dimensional
state vector is x(t) =

(
cA(t), cB(t), T (t), TJ(t)

)⊤ ∈ R4

with the entries cA(t) and cB(t) referring to concentrations
of the species A and B at time t and the remaining two
T (t) and TJ(t) denoting temperatures of the CSTR and its

TABLE II
FIXED PARAMETERS IN OUR ILL-CONDITIONED VAN DER VUSSE

REACTION SCENARIO

parameter value

k10 1.287× 10+12 hr−1

k20 1.287× 10+12 hr−1

k30 9.043× 10+9 L/(hr × mol)
E1/R 9758.3 K
E2/R 9758.3 K
E3/R 8560 K
∆Hr1 4.2 kJ/mol
∆Hr2 −11.0 kJ/mol
∆Hr3 −41.85 kJ/mol

ρ 0.9342 kg/L
Cp 3.01kJ/(kg × K)

kw 4032 kJ/(hr × m2 × K)

AR 0.215 m2

VR 10 L
mJ 5 kg
CPJ 2.0kJ/(kg × K)

F 141.9 L/hr
Q̇J −1113.5 kJ/hr
cA0 5.1 mol/L
T0 378.05 K

cooling jacket, respectively. The Van der Vusse reaction’s
kinetics is simulated by the nonlinear vector-function F (·) =(
f1(·), f2(·), f3(·), f4(·)

)⊤ ∈ R4 whose entries are presented
as follows:

f1(·) =
F

VR

[
cA0 − cA(t)

]
− k10 exp

{
− E1

RT

}
cA(t)

− k30 exp

{
− E3

RT

}
c2A(t),

f2(·) = − F

VR
cB(t) + k10 exp

{
− E1

RT

}
cA(t)

− k20 exp

{
− E2

RT

}
cB(t),

f3(·) =
F

VR

[
T0 − T ′(t)

]
+

kwAR

ρCpVR

[
TJ(t)− T (t)

]
−

[
k10∆Hr1 exp

{
− E1

RT

}
cA(t)

+ k20∆Hr2 exp

{
− E2

RT

}
cB(t)

+ k30∆Hr3 exp

{
− E3

RT

}
c2A(t)

]
/
[
ρCp

]
,

f4(·) =
1

mJCPJ

(
Q̇J + kwAR

[
T (t)− TJ(t)

])
. (3)

The steady-state of our ill-conditioned stochastic scenario
(termed the nominal operating point of the Van der Vusse
reaction) and its fixed parameters are taken from [6], [7] and
presented for convenience in Tables I and II, respectively. In
other words, the initial state of SDE (1) is given in Table I. It is
used for simulation of reference stochastic solutions and “true”
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measurements in Sec. IV. The random disturbance is then
modeled by the term Gw(t), which consists of the diagonal
diffusion matrix G = diag{2.1404, 1.0903, 387.34, 386.06}
and the 4-dimensional standard Brownian motion w(t) with
zero mean and identity matrix covariance.

Following [6]–[8], we examine the capacity of several EKF-
based SS’s for estimating the Van der Vusse reaction’s state
by means of temperature measurements, only. However, in
contrast to the cited papers, our measurement equation is
supposed to be ill-conditioned and given by the formula

yk =

(
0 0 1 1
0 0 1 1 + σ

)
xk + vk (4)

where the vector xk denotes an approximation to the re-
action’s state x(tk) at time tk, the measurement noise is
vk ∼ N (0, Rk) with the covariance matrix Rk = σ2I2, in
which I2 stands for the identity matrix of size 2, and σ refers
to a small positive real number, which serves for provoking
ill-conditioning in our Van der Vusse reaction scenario, i.e. the
measurement model (4) becomes increasingly ill-conditioned
as σ → 0. Measurements of the form (4) are a typical means
in numerical stability explorations of KFs [4].

The stochastic Van der Vusse reaction scenario presented
in Sec. II assumes that the fixed parameter cA0 in Table II
doubles at time t = 60 hr, as that done in [7], [8]. The total
simulation interval is taken to be [0,120 hr] in our case study.

III. EKF-BASED SOFTWARE SENSORS

In Sec. III, we outline briefly state estimators, which are
examined within our ill-conditioned stochastic Van der Vusse
reaction scenario. All such filters are built with use of the
so-called continuous-discrete approach [9]. The principal idea
behind all the methods under consideration is to employ the
following Moment Differential Equations (MDEs):

x̂′(t)=F
(
x̂(t), u(t)

)
, (5)

P ′(t)=J
(
x̂(t), u(t)

)
P (t)+P (t)J⊤(x̂(t), u(t))+GQG⊤ (6)

where the prime denotes the derivative of the corresponding
vector (or matrix) with respect to time, for predicting the
mean and covariance in each sampling interval of the above
scenario. In MDEs (5), (6), the matrix J

(
x̂(t), u(t)

)
=

∂F
(
x̂(t), u(t)

)
/∂x̂(t) denotes the Jacobian of the drift coeffi-

cient F
(
x̂(t), u(t)

)
, whose entries are defined in formulas (3),

the matrix G is also explained in Sec. II, Q ≡ I4 is set here,
x̂(t) stands for the mean of the random system’s state x(t)
at time t (i.e. x(t) is a solution to Eq. (1)), and u(t) is the
measurable input, which implies a known function of time.

Having integrated MDEs (5), (6) with the initial values
x̂(tk−1) = x̂k−1|k−1, P (tk−1) = Pk−1|k−1, where x̂k−1|k−1

and Pk−1|k−1 refer to the filtering solution calculated at time
tk−1, in the sampling interval [tk−1, tk], one fixes the predicted
state expectation and covariance in line with the following
rule: x̂k|k−1 = x̂(tk), Pk|k−1 = P (tk) where the vector x̂(tk)
and the matrix P (tk) are numerical solutions to MDEs (5),
(6) computed by this or that technique at time tk. Thus, the
diversity of the EKF-based SS’s under exploration stems from

the diversity of the numerical integration tools applied. Then,
the measurement update step is the standard one in each filter
and, hence, it is implemented in line with the following EKF
formulas:

Re,k = Rk +HkPk|k−1H
⊤
k , Kk = Pk|k−1H

⊤
k R−1

e,k, (7)

x̂k|k = x̂k|k−1 +Kkek, ek = yk − h(x̂k|k−1), (8)

Pk|k = Pk|k−1 −KkHkPk|k−1, (9)

in which the variable Jacobian matrix Hk = dh(x̂k|k−1)/dxk

is calculated at the above-predicted state mean x̂k|k−1 and
ek ∼ N (0, Re,k) are innovations of this method. Finally,
the linear least-square estimate x̂k|k of the stochastic Van
der Vusse reaction model’s state x(t) subject to the derived
measurements {y1, . . . , yk} becomes known at time tk.

The EKF-based SS (5)–(9) admits a square-root representa-
tion as well. The latter preserves automatically the symmetry
and positivity of the covariance matrix P (t). Verhaegen and
Van Dooren [3] prove that these properties are effective
for reducing round-off error accumulations in finite-precision
implementations of KFs. One way of obtaining the square-root
Kalman filtering relies on the square-root MDEs of the form

x̂′(t) = F
(
x̂(t), u(t)

)
, (10)

S′(t) = S(t)Φ
(
A(t) +A⊤(t) +B(t)

)
. (11)

In Eqs (10), (11), the square root S(t) stands for the lower
triangular matrix in the Cholesky covariance decomposition
P (t) = S(t)S⊤(t), A(t) = S−1(t)J

(
x̂(t), u(t)

)
S(t), B(t) =

S−1(t)GQG⊤S−⊤(t), and the matrix-function Φ(·) obeys the
formula

Φij(M) =

 Mij , if i > j,
Mij/2, if i = j,
0, if i < j.

(12)

Here, we have converted the covariance MDE (6) to the
square-root one (11) by repeating lines in [1, Appendix]. So,
these non-square-root and square-root covariance equations are
mathematically equivalent and expected to produce theoreti-
cally the same state estimation results in exact arithmetic.

As in the non-square-root EKF-based SS (5)–(9), the square-
root MDEs (10)–(12) are to be integrated numerically in the
time update step of the square-root Kalman filtering methods
outlined below. Again, this time update is grounded in the
trivial formulas x̂k|k−1 = x̂(tk) and Sk|k−1 = S(tk) at each
sampling instant tk. Then, having received a new measurement
yk and calculated the measurement noise covariance square
root R

1/2
k , i.e. Rk = R

1/2
k R

⊤/2
k , the measurement update

step is implemented in our square-root filtering techniques as
follows:(

R
1/2
e,k 0

K̄k Sk|k

)
=

(
R

1/2
k HkSk|k−1

0 Sk|k−1

)
Θk|k, (13)

x̂k|k = x̂k|k−1 + K̄kR
−1/2
e,k ek, ek = yk − h(x̂k|k−1). (14)

Formula (13) implies that its left-hand side consists of
the lower triangular block R

1/2
e,k , the full submatrix K̄k =
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Pk|k−1H
⊤
k R

−⊤/2
e,k , the lower triangular one Sk|k and the zero-

block 0 of proper size. The first two blocks are read off and
utilized in computing the filtering state mean x̂k|k by formulas
(14). The filtering covariance square root at the sampling time
tk is merely read off in the form of the lower triangular block
Sk|k. Most importantly, the left-hand side in formula (13) is
derived by multiplication with an orthogonal matrix Θk|k.

Below, we list eight EKF-based state estimators and their
acronyms, which are employed in the chemical reaction sce-
nario with ill-conditioned measurements described in Sec. II:

• ode45 is the abbreviation for the EKF-based SS (5)–
(9) where MDEs (5), (6) are treated numerically by
the MATLAB code ode45 with options AbsTol=10−6,
RelTol=10−6 and MaxStep= 0.1 (see [10, Sec. 3.2.1]
for further details and the entire state estimation algo-
rithm);

• ode45(SR) is the square-root variant of the first filter
ode45, in which the square-root MDEs (10), (11) are
treated numerically by the ODE solver ode45 with
the same options AbsTol=10−6, RelTol=10−6 and
MaxStep= 0.1;

• NIRK4 is the abbreviation for the EKF-based SS (5)–(9)
where MDEs (5), (6) are treated by the hybrid numerical
method NIRK4(2)M2 with global error control and the
global error threshold ϵg = 10−6 (see [11] for further
details and the entire state estimation algorithm);

• NIRK4(SR) is the square-root variant of the state esti-
mator NIRK4 implemented by square-rooting the hybrid
method NIRK4(2)M2 with global error control and the
global error threshold ϵg = 10−6 (see [12, Sec. IV] for
its full algorithmic description);

• NIRK6 is the abbreviation for the EKF-based SS (5)–(9)
where MDEs (5), (6) are integrated by the hybrid numer-
ical method NIRK6(4)M2 with global error control and
the global error threshold ϵg = 10−6 (see [11] for further
details and the entire state estimation algorithm);

• NIRK6(SR) is the square-root variant of the state esti-
mator NIRK6 implemented by square-rooting the hybrid
method NIRK6(4)M2 with global error control and the
global error threshold ϵg = 10−6 (see [8, Sec. 2.3] for its
full algorithmic description);

• M2(2) is the abbreviation for the EKF-based SS (5)–(9)
where MDEs (5), (6) are treated by the hybrid numerical
method M2(2) with local error control and the local
error threshold ϵloc = 10−6 designed in [13] (see [10,
Sec. 3.2.2] for its implementation details and the entire
state estimation algorithm);

• ESDIRK3(4) is the abbreviation for the EKF-based SS
(5)–(9) where MDEs (5), (6) are integrated numerically
by the embedded Runge-Kutta pair ESDIRK3(4) with
local error control and the local error threshold ϵloc =
10−6 designed in [14] (see [10, Sec. 3.2.3] for its full
algorithmic description).

We stress that the EKF-based SS ESDIRK3(4) is imple-
mented in the non-square-root form because of the reason

already explained in [10, Sec. 3.2.3].

IV. NUMERICAL STABILITY EXPLORATION

Here, we explore state estimation accuracies of all the
filters elaborated in Sec. III when these are applied to the
increasingly ill-conditioned stochastic Van der Vusse reaction
model presented in Sec. II. We begin with computing its “true”
states, i.e. our reference stochastic solution values xref (tk).
These are yielded numerically by solving the corresponding
SDE with the initial values from Table I by the Euler-
Maruyama scheme with the small fixed step size equal to
0.0001 hr in the entire modeling interval of 120 hr. Then, we
apply the measurement equation (4) and the reference solution
values evaluated at sampling instants tk for simulating “true”
measurements yk in our stochastic Van der Vusse reaction sce-
nario with ill-conditioned measurements. At last, we solve the
reverse problem, i.e. given the stochastic chemical system and
the measurement history, we apply the EKF-based SS’s listed
in Sec. III for calculating the filtering reaction’s states x̂k|k at
the sampling instants tk. The above procedure is repeated 100
times (Monte Carlo runs) for yielding the Accumulated Root
Mean Square Error (ARMSE) at each sampling rate, which is
accepted here to be δ = 1, 2, 3, 4, 5, 6, 10 hr, by the rule

ARMSE =

(
1

100K

100∑
l=1

K∑
k=1

4∑
i=1

(
xi
ref,l(tk)− x̂i

k|k,l
)2)1/2

.

In the above formula, the superscripts stand for the correspond-
ing entries in the reference and estimated state vectors (i.e. i
refers to the concentrations cA, cB or to the temperatures T (t)
and TJ(t) in our ill-conditioned Van der Vusse reaction sce-
nario), the subscript ref marks the “true” stochastic solution
computed with the Euler-Maruyama discretization method, l
distinguishes the particular Monte Carlo run, k indicates the
sampling time tk in use and K = [120/δ], where [·] stands
for the integer part of the number, means the total number of
samples fulfilled for every value of the sampling rate δ in the
entire simulation interval [0,120 hr].

All the EKF-based SS’s listed in Sec. III are implemented
in MATLAB and run under identical conditions. The lat-
ter implies that they utilize the same initial values, i.e.
x̄0 = (2.1404, 1.0903, 387.34, 386.06)⊤ and Π0 = 10−2I4,
as well as the same measurement histories and random noise
sequences for providing a fail comparison of their state esti-
mation capacities in the increasingly ill-conditioned stochastic
Van der Vusse reaction scenario described in Sec. II. The ill-
conditioning is taken to be σ = 10−5, 10−6, 10−7, 10−8. The
outcome ARMSE’s of all the filters are plotted in Fig 1.

Fig 1(a) says that when σ = 10−5, i.e. the Van der Vusse
scenario is rather well-conditioned, all our EKF-based SS’s
estimate equally well and accurately with the single exception
of ESDIRK3(4). The latter SS exposes its slightly larger
ARMSE’s on the chemical system at hand. Then, having
increased the ill-conditioning to σ = 10−6 in our chemical
scenario we observe the same filters’ behavior in Fig 1(b) as
that in Fig 1(a), but with a single exception. The EKF-based

289



1 2 3 4 5 6 7 8 9 10
0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

Sampling Period

A
cc

um
ul

at
ed

 R
oo

t M
ea

n 
S

qu
ar

e 
E

rr
or

(a) Estimation Accuracy, σ = 10−5

 

 
ode45
ode45 (SR)
NIRK4
NIRK4 (SR)
NIRK6
NIRK6 (SR)
M2(2)
ESDIRK3(4)

1 2 3 4 5 6 7 8 9 10
0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

Sampling Period

A
cc

um
ul

at
ed

 R
oo

t M
ea

n 
S

qu
ar

e 
E

rr
or

(b) Estimation Accuracy, σ = 10−6
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(c) Estimation Accuracy, σ = 10−7
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(d) Estimation Accuracy, σ = 10−8
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Fig. 1. Filters’ accuracies observed within the increasingly ill-conditioned stochastic Van der Vusse reaction scenario

SS ode45(SR) underperforms the other filters and estimates
the reaction’s states with the errors exceeding 10. That is why
its ARMSE’s are not shown in Fig 1(b). The further increase
of the ill-conditioning to σ = 10−7 exposes a similar picture
of the filters’ behavior in Fig 1(c). However, we see slightly
better accuracies achieved with the square-root EKF-based
SS’s NIRK4(SR) and NIRK6(SR) in our case study. Finally,
when σ = 10−8, only the latter two filters are able to estimate
successfully this severely ill-conditioned stochastic chemical
system. We stress that the square-root methods NIRK4(SR)
and NIRK6(SR) are equally accurate for all the values of
the parameter σ and absolutely insensitive to the increased
ill-conditioning in our Van der Vusse reaction scenario. That
is why the latter SS’s grounded in the stable orthogonal
transforms possess the highest numerical robustness to round-
off and exhibit the highest state estimation accuracy among
the methods listed in Sec. III. Our case study says that
these filters are rather promising and can be recommended
for practical treatment of various state estimation tasks in
chemistry research.

V. CONCLUSION

This paper has examined the numerical stability of EKF-
based SS’s applicable to stochastic models arisen in chemistry
research and engineering. Its focus is on continuous-discrete
stochastic systems, in which the chemical reaction kinetics is
modeled by means of an Itô-type SDE, but the measurement
procedure stays discrete in time. The Van der Vusse reaction
model underlies our case study conducted here. To look at the
numerical robustness of EKF-based SS’s commonly used in
practice, when the measurement model becomes increasingly
ill-conditioned, we have covered the algorithms grounded in
the MATLAB codes as well as in some other MDE solvers
designed in the realm of Kalman-like filtering, recently. We
have explored the conventional non-square-root methods and
also their square-root variants. The square-root SS’s have been
obtained in two different ways: i) by solving the square-root
MDEs (as in the MATLAB-based SS) and ii) by square-rooting
the filter itself (as in the NIRK-based methods). Our investiga-
tion has revealed that only the square-root filters grounded in
the second approach (with use of stable orthogonal transforms)
are perfectly stable and allow the highest state estimation
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accuracies to be achieved within our stochastic Van der Vusse
reaction scenario for various sampling rates. The non-square-
root filters and the square-root MATLAB-based SS are found
to be rather sensitive to the round-off error accumulation and
may be useful and accurate if the chemical system at hand
is reasonably well-conditioned. Finally, we have evidenced
that NIRK4(SR) and NIRK6(SR) are promising techniques
for practical treatment of various state estimation tasks in
chemistry research.
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